
Simgi - A Stochastic Gillespie Simulator

Markus Dittrich

02/10/2010

This manual covers simgi v0.3 (released 02/10/2010).

Contents

1) Introduction

2) Download

3) Installation and Compilation

4) Simgi Model Description Language Syntax

5) Input Samples

6) Contact and Bugs

7) Copyright and License

8) References

Introduction

simgi is a small but efficient stochastic simulator based on Gillespie’s direct
method and uses a 64 bit implementation of the Mersenne Twister algorithm
as pseudo random number source. simgi is command line driven and features a
powerful and flexible model generation language.

Download

The current release of simgi (version 0.3) can be obtained here in both source
and binary formats.

1

http://sourceforge.net/project/platformdownload.php?group_id=260550

Installation and Compilation

The simgi binary packages for 32 bit and 64 bit Linux should run on any recent
distribution with libgmp installed.

simgi is written in pure Haskell and compilation requires a working ghc Haskell
compiler as well as the following additional packages:

• >=ghc–6.10

• >=gmp–4.3

• >=mersenne-random-pure64

• bc (for the test suite only)

The optional document generation requires

• >=pandoc–1.4

• latex (e.g. texlive)

simgi can be build in one of two ways

1) the standard make, make check, make install

2) via cabal

Simgi Model Generation Language Syntax

General Syntax

simgi simulation models are described via Simgi Model Generation Language
(SGL) inside a plain text ASCII file. Syntactically, each SGL file consists of
a number of blocks each describing a certain aspect of the simulation such as
variables, parameters, molecules, or reactions. Each block has the following
structure

<block name>

<block content>

end

2

http://haskell.org/ghc/
http://gmplib.org/
http://hackage.haskell.org/package/mersenne-random-pure64
http://www.gnu.org/software/bc/bc.html
http://johnmacfarlane.net/pandoc

Please note that there is no need to put block name and content description on
separate lines even though it is highly recommended to do so for ease of reading.

Even though syntactically SGL does not require blocks to be arranged in any
specific order, semantically, each identifier used in a given block has to be defined
when first used. Hence, the molecule definition block has to be placed before
the reaction definition block.

Comment on Syntax Notation

In the syntax specification below, the following notation is used

• If a syntactic expression can contain either one of a number of options A,
B, C, . . . this is specified as (A <|> B <|> C <|> ..).

• If a syntactic element A is optional, it is enclosed in brackets [A].

• If a syntactic element B can repeat zero or more times it is enclosed in
curly braces { A }.

• Literal braces, parenthesis, etc. are always enclosed in single quotes, e.g,
‘(’ or ‘}’.

Please note that this notation does not apply in the examples given, which are
always meant to be literal code examples.

Comments

Comments inside SGL follow the standard Haskell convention. Multiline com-
ments can be wrapped inside {— —}. Single line comments start with — and
ignore everything until the next newline. For example,

{-- this is

a multiline

comment

--}

foo = bar -- this is a single line comment

Identifiers

SGL identifiers have to start with a lower or uppercase letter followed by any
number of lower or uppercase letters, digits, or underscores. Please note that
identifiers can not be any of the keywords or mathematical functions available
in simgi.

3

Numerical Identifiers and Statement Blocks

Inside SGL, some identifiers are assigned numerical values. Examples are vari-
ables, initial molecule numbers, reaction rates, or event definitions. A numerical
value can either be a literal Double value or a statement block. The latter is
a mathematical expression enclosed in curly braces that evaluates to a Double
literal either at parse-time or at run-time. Whether a statement block is evalu-
ated at parse or run-time depends on the definition block in which it occurs as
detailed in the description for each block below.

statement blocks which are evaluated at parse-time may contain only mathemat-
ical expression involving Double literals and variable values. statement blocks
which are evaluated at run-time can in addition contain the instantaneous counts
of molecules as well as the current simulation time accessible via the keyword
TIME. These two types of statement blocks are referred to as parse-time state-
ment blocks and run-time statement blocks, respectively.

Assuming that foo and bar are variables, the following are valid statement blocks

Example:

{ 3.0*foo + bar^2 } -- parse-time statement block

{ 3.0*exp(-foo/TIME) + bar*TIME } -- run-time statement block

Inside statment blocks simgi supports the use of the following mathematical
functions:

sqrt, exp, log, log2, log10, sin, cos, tan, asin, acos, atan, sinh, cosh,
tanh, asinh, acosh, atanh, acosh, atanh, erf, erfc, abs.

Note 1: Depending on their numerical complexity, run-time statement blocks
incur a computational overhead and should therefore be avoided if possible.

Note 2: SGL statements which expect an Integer value instead of a Double
will use floor() to for rounding.

Variable Definition Block

<block name> = variables

This block allows the definition of variables which can then be used inside any
statement block in the remainder of the SGL file. Variable assignments are of
the form

<variable name> = (Double <|> parse-time statement block)

4

Since the variable block will be evaluated only after it has been fully parsed,
variables which depend on other variables via parse-time statement blocks do
not have to be defined in order.

Note: Users have to ensure that variable definitions do not contain circular
references since this may lead to infinite evaluation loops.

Parameter Definition Block

<block name> = parameters

The parameter block defines the main simulation control parameters. It can
be left out and all parameters will then assume their default values. Available
parameter options are

• time = (Double <|> parse-time statement block)

Maximum simulation time in seconds. Default is 0.0 s.

• outputBuffer = (Integer <|> parse-time statement block)

Output will be kept in memory and written to the output file and stdout
every outputBuffer iterations. Larger values should result in faster simu-
lations due to reduced I/O but will require more system memory. Default
is to write output every 10000 iterations.

Note: The value of outputBuffer only affects the chunk size in which
output is written to the output file, not how much output is actually
generated during a simulation (see outputFreq parameter).

• outputFreq = (Integer <|> parse-time statement block)

Iteration frequency with which output is generated. Default is to generate
output every 1000 iterations.

• systemVol = (Double <|> parse-time statement block <|> nil)

Volume of the simulation system in dm3 nor nil. Unless nil is specified,
reaction rates are interpreted in molar units. If nil is given instead, rates
are interpreted as reaction propensities (see 1). The default is a system
volume of 1.0 dm3.

Molecule Definition Block

<block name> = molecules

The molecule definition block is used to declare all molecular species present
in the simulation and assign initial molecule counts to each species. Molecule
assignments are of the form

5

<molecule name> = (Integer <|> parse-time statement block)

Note: In contrast to many ODE simulation packages, simgi requires the speci-
fication of molecule numbers not concentrations.

Example:

molecules

A = 100

B = { 10 * someVar }

end

Reaction Definition Block

<block name> = reactions

The reaction definition block is the heart of the simgi model and describes the
dynamics of the underlying chemical system. Rate expressions are of the general
form

a1 R1 + . . . + aN RN -> b1 P1 + . . . + bM PM | <rate> |

where

<rate> = (Double <|> run-time statement block)

and ai, Ri, bj, Pj are the stoichiometric coefficients and names of reactants and
products, respectively. If any of the stoichiometric coefficients is omitted it is
assumed to be equal to 1.

Example:

reactions

2A + 3B -> C | 1e-4 |

10B + 4C -> D | { 2.0 * exp(-A/TIME) } |

end

Here, the rate for the second reaction is given by a run-time statement block and
exponentially decays as a function of the instantaneous concentration of species
A and simulation time.

6

Event Definition Block

<block name> = events

Events allow users to interact with a simulation at run-time. The event block
consists of a list of event statements of the form

[‘(’] trigger expression [’)’] => ‘[’ action expression list ’]’

Here, trigger expression defines when an event takes place and action expres-
sion specifies the action triggered by the event. During each iteration of the
simulation each trigger expression will be evaluated and if True all actions in
the associated action expression list will be executed.

A trigger expression consists of one or more trigger primitives combined via the
boolean operators && (AND) and || (OR)

trigger expression = trigger primitive { (&& <|> ||) trigger primitive
}

Trigger primitives each consist of two run-time statement blocks or Double lit-
erals combined via a relational operation

trigger primitive = [‘(’] (run-time statement block <|> Double) (
== <|> < <|> > <|> <= <|> =>) (run-time statement block
<|> Double) [’)’]

An action expression consists of a comma separated list of action primitives

action expression = action primitive { , action primitive }

where each action primitive is an assignment statement of the form

(variable <|> molecule name) = (Double <|> run-time statement
block)

Example:

events

A == 100 => [A = {A/100}]

(A == 100 && B == 0) => [A = 10, B = {A/10}]

A == 10 || C == 50 => [C = 10, A = {A+C*TIME}]

end

7

Output Definition Block

<block name> = output

This block defines the name of the output file and the type of simulation output
that will be produced and written to it. Presently, simgi will only generate a
single output file and produce a separate column for each output item requested.
Available options are

• outputFile = String

Name of the output file. If this option is not given no output is produced.

• ‘[’ String <|> run-time statement block { , String <|> run-time statment
block } ’]’

List of variables to be output. Users can either provide the name of a
variable or molecule, or any run-time statement block. In addition, the
simulation time and iteration number can be output via the special key-
words TIMES and ITERATIONS. The order in which items are punched
to the output file is the same as the one in which they are listed.

Note: Data is produced only every outputFreq iterations as defined in the
Parameter Definition Block.

Example:

output

outputFile = "someFile.dat"

[TIMES, A, B, {A*B/10}, ITERATIONS]

end

Input Samples

Both the binary and source distributions for simgi contain a Models/ directory
with several example SGL input files for a variety of systems.

Contact and Bugs

Please report bugs to Markus Dittrich <haskelladdict.at.users.sourceforge.net>.
The author would also like to encourage users to email comments, suggestions,
and questions.

8

Copyright and License

simgi was developed and is currently maintained by Markus Dittrich <haskel-
laddict.at.users.sourceforge.net>. simgi is free software and released under the
GPL version 3.

Copyright 2009–2010 Markus Dittrich, National Resource for Biomedical Su-
percomputing & Carnegie Mellon University.

References

[1] Daniel T. Gillespie (1977). “Exact Stochastic Simulation of Coupled Chem-
ical Reactions”. The Journal of Physical Chemistry 81 (25): 2340–2361

9

